

Project Packs

2239 N Black Canyon Hwy Phoienix, AZ 85009 adam@projectpacks.co (530) 514-0500 Lic. #0000084ESFH12297246

GBUB231218P

Plant, Flower - Cured, Indoor

Sample: 2403LVL0354.2007

Secondary License: ; Chain of Distribution:

Strain: Grape Bubba; Batch#: GBUB231218P; Batch Size: g; External Batch ID: GBUB231218P Sample Received: 03/12/2024; Report Created: 04/11/2024; Report Expiration: 04/11/2025 Sampling Date: 03/06/2024; Sampling Time: 1pm; Sampling Person: EV Harvest Date: 03/04/2024; Manufacturing Date: ; External Lot ID:

Complete

2007 Grape Bubba 3/4/24	26.79% Total THC	ND Total CBD	31.66%
	1.53% Total Terpenes	Complete ^{8.6%} Moisture	Total Cannabinoids

Cannabinoids

Cum					
	Analyte	LOQ	Mass	Mass	Qualifier
		%	%	mg/g	
	THCa	0.154	29.579	295.79	
	Δ9-THC	0.154	0.847	8.47	M1
	∆8-THC	0.154	ND	ND	Q3
	THCVa	0.154	0.226	2.26	Q3
	THCV	0.154	ND	ND	Q3
	CBDa	0.154	ND	ND	
	CBD	0.154	ND	ND	
	CBDVa	0.154	ND	ND	Q3
	CBDV	0.154	ND	ND	Q3
	CBN	0.154	ND	ND	Q3
	CBGa	0.154	0.649	6.49	Q3
	CBG	0.154	<loq< td=""><td><loq< td=""><td>Q3</td></loq<></td></loq<>	<loq< td=""><td>Q3</td></loq<>	Q3
	CBCa	0.154	0.363	3.63	Q3
	CBC	0.154	ND	ND	Q3
	Total		31.663	316.63	Q3

Qualifiers: Date Tested: 03/13/2024 07:00 am

Total THC = THCa * 0.877 + d9-THC

Total CBD = CBDa * 0.877 + CBD The reported result is based on a sample weight with the applicable moisture content for that sample; Unless otherwise stated all quality control samples performed within specifications established by the Laboratory: Cannabinoid potency performed by HPLC-DAD per SOP-(1608). ADHS approved method for potency by HPLC-DAD for all fisted analytes.

1525 N Granite Reef Rd Scottsdale, AZ (480) 867-1520 http://www.levelonelabs.com

Confident LIMS All Rights Reserved

www.confidentlims.com

Matthew Schuberth Laboratory Director coa.support@confidentlims.com (866) 506-5866

This product has been tested by Level One Labs, LLC using valid testing methodologies and a quality system as required by state law. Values reported relate only to the product tested. Level One Labs makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected levels of any compounds reported herein. This Certificate shall not be reproduced except in full, without the written approval of Level One Labs. Using marijuana during pregnancy could cause birth defects or other health issues to your unborn child. This certificate was regenerated to update compliance details. All previously issued versions of this certificate are now void. CDG 4.11.24

Powered by Confident LIMS 2 of 5

Project Packs

2239 N Black Canyon Hwy Phoienix, AZ 85009 adam@projectpacks.co (530) 514-0500 Lic. #0000084ESFH12297246

GBUB231218P

Plant, Flower - Cured, Indoor

Sample: 2403LVL0354.2007

Secondary License: ; Chain of Distribution:


Strain: Grape Bubba; Batch#: GBUB231218P; Batch Size: g; External Batch ID: GBUB231218P Sample Received: 03/12/2024; Report Created: 04/11/2024; Report Expiration: 04/11/2025 Sampling Date: 03/06/2024; Sampling Time: 1pm; Sampling Person: EV Harvest Date: 03/04/2024; Manufacturing Date: ; External Lot ID:

Terpenes

	Analyte	LOQ	Mass	MassQu	alifier	Analyte	LOQ	Mass	MassQ	ualifier
δ-Limonene 0.02 0.39 3.9 Q3 Eucalyptol 0.01 ND ND Q3 β-Myrcene 0.01 0.17 1.7 Q3 Farnesene 0.00 ND ND Q3 α-Humulene 0.01 0.12 1.2 Q3 Fenchone 0.02 <loq< td=""> Q3 Linalool 0.02 0.10 1.0 Q3 y-Terpinene 0.01 ND ND Q3 α-Bisabolol 0.01 0.07 0.7 Q3 y-Terpinene 0.01 ND ND Q3 α-Bisabolol 0.01 0.04 0.4 Q3 Geraniol 0.19 ND Q3 α-Terpineol 0.02 0.03 0.3 Q3 Gai Guaiol 0.01 ND ND Q3 β-Pinene 0.02 0.03 0.3 Q3 Isoborneol 0.10 ND ND Q3 β-Eudesmol 0.01 0.01 0.1 Q3 Metrol</loq<>	-	%	%				%	%	mg/g	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	β-Caryophyllene	0.02	0.50	5.0	Q3	Citronellol	0.10	ND	ND	Q3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	δ-Limonene	0.02	0.39	3.9	Q3	Eucalyptol	0.01	ND	ND	Q3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	β-Myrcene	0.01	0.17	1.7	Q3	Farnesene	0.00	ND	ND	Q 3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	α-Humulene	0.01	0.12	1.2	Q3	Fenchone	0.02	<loq< td=""><td><loq< td=""><td>Q3</td></loq<></td></loq<>	<loq< td=""><td>Q3</td></loq<>	Q3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Linalool	0.02	0.10	1.0	Q3	y-Terpinene	0.01	ND	ND	Q3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	α-Bisabolol	0.01	0.07	0.7	Q3	y-Terpineol	0.00	ND	ND	Q3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Fenchol	0.01	0.04	0.4	Q3	Geraniol	0.19	ND	ND	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	α-Pinene	0.01	0.04	0.4	Q3	Geran <mark>yl A</mark> ce <mark>t</mark> ate	0.01	ND	ND	
$ \begin{array}{c cccc} Camphene & 0.01 & 0.01 & 0.1 & Q3 & Isopulegol & 0.01 & ND & ND & Q3 \\ \beta-Eudesmol & 0.01 & 0.01 & 0.1 & Q3 & Menthol & 0.01 & ND & ND & Q3 \\ Caryophyllene & 0.01 & 0.01 & 0.1 & Q3 & Merol & 0.01 & ND & ND & Q3 \\ Oxide & 0.01 & 0.01 & 0.1 & Q3 & Pulegone & 0.01 & ND & ND & Q3 \\ 3-Carene & 0.02 & ND & ND & Q3 & p-Cymene & 0.01 & ND & ND & Q3 \\ \alpha-Cedrene & 0.01 & ND & ND & Q3 & Sabinene & 0.01 & ND & ND & Q3 \\ \alpha-Cedrene & 0.01 & ND & ND & Q3 & Sabinene & 0.01 & ND & ND & Q3 \\ \alpha-Phellandrene & 0.01 & ND & ND & Q3 & Sabinene & 0.01 & ND & ND & Q3 \\ \alpha-Terpinene & 0.01 & ND & ND & Q3 & Terpinolene & 0.02 < LOQ < LOQ & Q3 \\ Borneol & 0.03 < LOQ < LOQ & Q3 & trans-Nerolidol & 0.01 & ND & ND & Q3 \\ Camphor & 0.04 & ND & ND & Q3 & trans-Ocimene & 0.01 & ND & ND & Q3 \\ cis-Nerolidol & 0.02 & ND & ND & Q3 \\ \end{array}$	α-Terpineol	0.02			Q3	Guaiol		ND		
$ \begin{array}{c} \beta \mbox{-}Eudesmol \\ Garyophyllene \\ Oxide \\ \hline \mbox{Oxide} \\ \hline \m$	β-Pinene	0.02	0.03	0.3	Q3	Isoborneol	0.10	ND	ND	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Camphene	0.01	0.01	0.1	Q3	Isopulegol	0.01	ND	ND	Q3
Oxide0.010.010.1Q3 PulegonePulegone0.01NDNDQ33-Carene0.02NDNDQ3p-Cymene0.01NDNDQ3 α -Cedrene0.01NDNDQ3Sabinene0.01NDNDQ3 α -Phellandrene0.01NDNDQ3Sabinene0.01NDNDQ3 α -Terpinene0.01NDNDQ3Terpinolene0.02 <loq< td="">Q3Borneol0.03<loq< td=""><loq< td="">Q3trans-Nerolidol0.01NDNDQ3Camphor0.04NDNDQ3trans-Ocimene0.01NDNDQ3Cedrol0.01NDNDQ3Valencene0.01NDNDQ3cis-Nerolidol0.02NDNDQ3Valencene0.01NDNDQ3</loq<></loq<></loq<>	β-Eudesmol	0.01	0.01	0.1	Q3	Menthol	0.01	ND	ND	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Caryophyllene	0.01	0.01	0.1	03					-
$ \begin{array}{cccccc} \alpha - Cedrene & 0.01 & ND & ND & Q3 & Sabinene & 0.01 & ND & ND & Q3 \\ \alpha - Phellandrene & 0.01 & ND & ND & Q3 & Sabinene Hydrate & 0.01 & ND & ND & Q3 \\ \alpha - Terpinene & 0.01 & ND & ND & Q3 & Terpinolene & 0.02 < LOQ < LOQ & Q3 \\ Borneol & 0.03 < LOQ < LOQ & Q3 & trans-Nerolidol & 0.01 & ND & ND & Q3 \\ Camphor & 0.04 & ND & ND & Q3 & trans-Ocimene & 0.01 & ND & ND & Q3 \\ Cedrol & 0.01 & ND & ND & Q3 & Valencene & 0.01 & ND & ND & Q3 \\ cis-Nerolidol & 0.02 & ND & ND & Q3 & Terpinolene & 0.01 & ND & ND & Q3 \\ \end{array} $	Oxide	0.01	0.01	0.1	Q5	Pulegone	0.01	ND	ND	Q3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3-Carene	0.02	ND	ND	Q3	p-Cymene	0.01	ND	ND	-
α-Terpinene0.01NDNDQ3Terpinolene0.02 <loq< th=""><loq< th="">Q3Borneol0.03<loq< td=""><loq< td="">Q3trans-Nerolidol0.01NDNDQ3Camphor0.04NDNDQ3trans-Ocimene0.01NDNDQ3Cedrol0.01NDNDQ3Valencene0.01NDNDQ3cis-Nerolidol0.02NDNDQ3Valencene0.01NDNDQ3</loq<></loq<></loq<></loq<>	α-Cedrene	0.01	ND	ND	-		0.01	ND	ND	
Borneol0.03 <loq <loq<="" th="">Q3 trans-Nerolidol0.01NDNDQ3Camphor0.04 ND NDQ3 trans-Ocimene0.01 NDNDQ3Cedrol0.01 ND NDQ3Valencene0.01 NDNDQ3cis-Nerolidol0.02 ND NDQ3Q3Valencene0.01 NDNDQ3</loq>	α -Phellandrene	0.01	ND	ND	Q3	Sabinene Hydrate	0.01	ND	ND	
Camphor0.04NDNDQ3trans-Ocimene0.01NDNDQ3Cedrol0.01NDNDQ3Valencene0.01NDNDQ3cis-Nerolidol0.02NDNDQ3Valencene0.01NDNDQ3	α-Terpinene	0.01	ND	ND	Q3	Terpinolene 🛛 💙	0.02	<loq< td=""><td><loq< td=""><td>-</td></loq<></td></loq<>	<loq< td=""><td>-</td></loq<>	-
Cedrol0.01NDNDQ3Valencene0.01NDQ3cis-Nerolidol0.02NDNDQ3 </td <td>Borneol</td> <td>0.03</td> <td><loq< td=""><td><loq< td=""><td>Q3</td><td>trans-Nerolidol</td><td>0.01</td><td>ND</td><td>ND</td><td></td></loq<></td></loq<></td>	Borneol	0.03	<loq< td=""><td><loq< td=""><td>Q3</td><td>trans-Nerolidol</td><td>0.01</td><td>ND</td><td>ND</td><td></td></loq<></td></loq<>	<loq< td=""><td>Q3</td><td>trans-Nerolidol</td><td>0.01</td><td>ND</td><td>ND</td><td></td></loq<>	Q3	trans-Nerolidol	0.01	ND	ND	
cis-Nerolidol 0.02 ND ND Q3	Camphor	0.04	ND	ND	Q3	trans-Ocimene	0.01	ND	ND	Q3
	Cedrol	0.01	ND	ND	Q3	Valencene	0.01	ND	ND	Q3
	cis-Nerolidol	0.02	ND	ND	Q3					
cis-Ocimene 0.00 ND ND Q3	cis-Ocimene	0.00	ND	ND	Q3					

Qualifiers: Date Tested: 03/14/2024 12:00 am

LOQ = Limit of Quantitation; The reported result is based on a sample weight with the applicable moisture content for that sample; Unless otherwise stated all quality control samples performed within specifications established by the Laboratory. Qualifying code Q3: For informational purposes only.

1525 N Granite Reef Rd Scottsdale, AZ (480) 867-1520 http://www.levelonelabs.com

Confident LIMS All Rights Reserved coa.support@confidentlims.com

(866) 506-5866

Lic#0000004LCIG00024823 www.confidentlims.com This product has been tested by Level One Labs, LLC using valid testing methodologies and a quality system as required by state law. Values reported relate only to the product tested. Level One Labs makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected levels of any compounds reported herein. This Certificate shall not be reproduced except in full, without the written approval of Level One Labs. Using marijuana during pregnancy could cause birth defects or other health issues to your unborn child. This certificate was regenerated to update compliance details. All previously issued versions of this certificate are now void. CDG 4.11.24

Matthew Schuberth Laboratory Director

Project Packs

2239 N Black Canyon Hwy Phoienix, AZ 85009 adam@projectpacks.co (530) 514-0500 Lic. #0000084ESFH12297246

GBUB231218P

Plant, Flower - Cured, Indoor

Sample: 2403LVL0354.2007

Secondary License: ; Chain of Distribution:

Strain: Grape Bubba; Batch#: GBUB231218P; Batch Size: g; External Batch ID: GBUB231218P Sample Received: 03/12/2024; Report Created: 04/11/2024; Report Expiration: 04/11/2025 Sampling Date: 03/06/2024; Sampling Time: 1pm; Sampling Person: EV Harvest Date: 03/04/2024; Manufacturing Date: ; External Lot ID:

Pass

Pesticides

1 Cottetues											
Analyte	LOQ	Limit	Units	Status	Qualifier	Analyte	LOQ	Limit	Units	Status	Qualifier
	PPM	PPM	PPM				PPM	PPM	PPM		
Abamectin	0.030	0.500	ND	Pass		Hexythiazox	0.040	1.000	ND	Pass	
Acephate	0.040	0.400	ND	Pass		I <mark>m</mark> azalil	0.040	0.200	ND	Pass	
Acetamiprid	0.040	0.200	ND	Pass		I <mark>m</mark> idacloprid	0.040	0.400	ND	Pass	
Aldicarb	0.040	0.400	ND	Pass		K <mark>r</mark> esoxim Methyl	0.040	0.400	ND	Pass	
Azoxystrobin	0.040	0.200	ND	Pass		Malathion	0.040	0.200	ND	Pass	
Bifenazate	0.040	0.200	ND	Pass		Metalaxyl	0.040	0.200	ND	Pass	
Bifenthrin	0.040	0.200	ND	Pass		M <mark>e</mark> thiocarb	0.040	0.200	ND	Pass	
Boscalid	0.040	0.400	ND	Pass		M <mark>e</mark> thomyl	0.040	0.400	ND	Pass	
Carbaryl	0.040	0.200	ND	Pass		Myclobutanil	0.040	0.200	ND	Pass	
Carbofuran	0.040	0.200	ND	Pass		Naled	0.040	0.500	ND	Pass	
Chlorantraniliprole	0.040	0.200	ND	Pass	L1 M1 <mark>V</mark> 1	Oxamyl	0.040	1.000	ND	Pass	
Chlorfenapyr	0.430	1.000	ND	Pass		Pa <mark>c</mark> lobutrazol	0.040	0.400	ND	Pass	
Chlorpyrifos	0.040	0.200	ND	Pass		Permethrins	0.040	0.200	ND	Pass	M2 V1
Clofentezine	0.040	0.200	ND	Pass		Phosmet	0.040	0.200	ND	Pass	
Cyfluthrin	0.430	1.000	ND	Pass		Piperonyl Butoxide	0.040	2.000	ND	Pass	
Cypermethrin	0.040	1.000	ND	Pass		Prallethrin	0.040	0.200	ND	Pass	
Daminozide	0.430	1.000	ND	Pass		Propiconazole	0.040	0.400	ND	Pass	
Dichlorvos (DDVP)	0.040	0.100	ND	Pass		Propoxur	0.040	0.200	ND	Pass	
Diazinon	0.040	0.200	ND	Pass		Pyrethrins	0.430	1.000	ND	Pass	
Dimethoate	0.040	0.200	ND	Pass		Pyridaben	0.040	0.200	ND	Pass	
Ethoprophos	0.040	0.200	ND	Pass		Spinosad	0.040	0.200	ND	Pass	
Etofenprox	0.040	0.400	ND	Pass	M2	Spiromesifen	0.040	0.200	ND	Pass	
Etoxazole	0.040	0.200	ND	Pass		Spirotetramat	0.040	0.200	ND	Pass	
Fenoxycarb	0.040	0.200	ND	Pass		Spiroxamine	0.040	0.400	ND	Pass	
Fenpyroximate	0.040	0.400	ND	Pass		Tebuconazole	0.040	0.400	ND	Pass	
Fipronil	0.040	0.400	ND	Pass		Thiacloprid	0.040	0.200	ND	Pass	
Flonicamid	0.040	1.000	ND	Pass		Thiamethoxam	0.040	0.200	ND	Pass	
Fludioxonil	0.040	0.400	ND	Pass		Trifloxystrobin	0.040	0.200	ND	Pass	

Qualifiers:

Performed by LCMSMS per SOP-LM-021 and SOP-LM-022. ND = Not Detected; NR = Not Reported. Methods used per AZDHS R9-17-404.03 and pesticide limits set by AZDHS R9-17 Table 3.1. ADHS approved method for pesticide testing by LCMSMS for full list effective 5/1/2021.

1525 N Granite Reef Rd Scottsdale, AZ (480) 867-1520

Alter Str.

Confident LIMS All Rights Reserved coa.support@confidentlims.com

http://www.levelonelabs.com Lic#0000004LCIG00024823

Matthew Schuberth Laboratory Director

(866) 506-5866 www.confidentlims.com

This product has been tested by Level One Labs, LLC using valid testing methodologies and a quality system as required by state law. Values reported relate only to the product tested. Level One Labs makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected levels of any compounds reported herein. This Certificate shall not be reproduced except in full, without the written approval of Level One Labs. Using marijuana during pregnancy could cause birth defects or other health issues to your unborn child. This certificate was regenerated to update compliance details. All previously issued versions of this certificate are now void. CDG 4.11.24

Powered by Confident LIMS 4 of 5

Project Packs

2239 N Black Canyon Hwy Phoienix, AZ 85009 adam@projectpacks.co (530) 514-0500 Lic. #0000084ESFH12297246

GBUB231218P

Plant, Flower - Cured, Indoor

Sample: 2403LVL0354.2007

Secondary License: ; Chain of Distribution:

Strain: Grape Bubba; Batch#: GBUB231218P; Batch Size: g; External Batch ID: GBUB231218P Sample Received: 03/12/2024; Report Created: 04/11/2024; Report Expiration: 04/11/2025 Sampling Date: 03/06/2024; Sampling Time: 1pm; Sampling Person: EV Harvest Date: 03/04/2024; Manufacturing Date: ; External Lot ID:

Microbials

Pass

Analyte	Result	Result Units	Status	Qualifier
E. Coli	<10	CFU/G	Pass	
Salmonella	Not <mark>D</mark> etected	in one gram	Pass	
Aspergillus terreus	Not <mark>D</mark> etected	in one gram	Pass	
Aspergillus fumigatus, Aspergillus flavus, and Aspergillus niger	Not Detected	in one gram	Pass	

Oualifiers: Date Tested: 03/14/2024 12:00 am

TNTC = Too Numerous to Count. The lower limit of quantification for E. coli is 10 CFU/g unless noted on the CoA by further dilution. Unless otherwise stated all quality control samples performed within specifications. Analysis Method/Instrumentation: E. coli plating via 3M Petrifilm per SOP-LM-019, Salmonella spp. And Aspergillus spp. detection by Bio-Rad CFX96 Deep Well real-time PCR per SOP-LM-016 & SOP-LM-017. Methods used per AZDHS R9-17-404.04 and microbial limits set by AZDHS R9-17 Table 3.1. ADHS approved method for microbials for all listed organisms.

1525 N Granite Reef Rd Scottsdale, AZ (480) 867-1520

http://www.levelonelabs.com Lic#0000004LCIG00024823 Matthew Schuberth

the

Confident LIMS All Rights Reserved coa.support@confidentlims.com

Laboratory Director

(866) 506-5866 www.confidentlims.com This product has been tested by Level One Labs, LLC using valid testing methodologies and a quality system as required by state law. Values reported relate only to the product tested. Level One Labs makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected levels of any compounds reported herein. This Certificate shall not be reproduced except in full, without the written approval of Level One Labs. Using marijuana during pregnancy could cause birth defects or other health issues to your unborn child. This certificate was regenerated to update compliance details. All previously issued versions of this certificate are now void. CDG 4.11.24

Powered by Confident LIMS 5 of 5

Project Packs

2239 N Black Canyon Hwy Phoienix, AZ 85009 adam@projectpacks.co (530) 514-0500 Lic. #0000084ESFH12297246

GBUB231218P

Plant, Flower - Cured, Indoor

Sample: 2403LVL0354.2007

Secondary License: ; Chain of Distribution:

Strain: Grape Bubba; Batch#: GBUB231218P; Batch Size: g; External Batch ID: GBUB231218P Sample Received: 03/12/2024; Report Created: 04/11/2024; Report Expiration: 04/11/2025 Sampling Date: 03/06/2024; Sampling Time: 1pm; Sampling Person: EV Harvest Date: 03/04/2024; Manufacturing Date: ; External Lot ID:

Heavy Metals

Pass

Analyte	Mass	Limit	Status	Qualifier
	PPM	PPM		
Arsenic	<0.4 <mark>0</mark> 0	0.400	Pass	V1
Cadmium	<0.4 <mark>0</mark> 0	0.400	Pass	V1
Lead	<1.0 <mark>0</mark> 0	1.000	Pass	
Mercury	<0.2 <mark>0</mark> 0	0.200	Pass	

Qualifiers: Date Teste

LOQ = Lim all quality control samples performed within specifications established by the Laboratory. Subcontracted through IAS. Approved for all analytes by ICP-OES. Inter Ag Services Inc. Registration Certificate Identification Number: 00000009LCSL00311854

1525 N Granite Reef Rd Scottsdale, AZ (480) 867-1520

http://www.levelonelabs.com Lic#0000004LCIG00024823 This product has been tested by Level One Labs, LLC using valid testing methodologies and a quality system as required by state law. Values reported relate only to the product tested. Level One Labs makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected levels of any compounds reported herein. This Certificate shall not be reproduced except in full, without the written approval of Level One Labs. Using marijuana during pregnancy could cause birth defects or other health issues to your unborn child. This certificate was regenerated to update compliance details. All previously issued versions of this certificate are now void. CDG 4.11.24

Alle Str.

Confident LIMS All Rights Reserved

www.confidentlims.com

Matthew Schuberth Laboratory Director coa.support@confidentlims.com (866) 506-5866

